Steam traps and valves require periodic maintenance, easily applicable and removable jacket type insulations are more appropriate rather than fixed insulation applications for these armatures. A valve jacket is a simple and smart solution for preventing heat losses around the valves at hot or cold liquid transporting pipelines.

Thermal energy benefit by jacket type insulations is dependent on some factors likewise process temperature, ambient temperature and wind speed.

Un-insulated valves cause energy loses, reducing energy loses to the minimum level by using valve jackets helps to reduce operation costs. Easily removable valve jackets make the maintenance easier.

APPLICATION AREAS

- Hot water and steam lines
- Refineries and gas processing plants
- Petrochemical plants
- Power plants
- Military establishments
- Food and oil mills
- Textile industry
- Plastic plants
- Oil and gas processing industry
- Pharmaceutical plants

INSULATION ADVANTAGES

- Health, safety,
- Heat economy >> Energy, competition, business
- Providing thermal comfort conditions
- Sound level
- Fire protection
- Prevention of sweating, coagulation, evaporation and frost,
- Temperature drop in pipelines, use of thermal capacity efficiently

GENERAL FEATURES

Steam traps and valves require periodic maintenance, easily applicable and removable jacket type insulations are more appropriate rather than fixed insulation applications for these armatures. A valve jacket is a simple and smart solution for preventing heat losses around the valves at hot or cold liquid transporting pipelines.
VALVE INSULATION JACKETS

FABRIC TYPES

ROCKWOOL
- It is obtained by making the basalt stone melt and fibrous.
- The thermal conductivity value $k = 0.040 \text{ W/mK}$.
- The water vapor diffusion resistance is $m = 542 \text{ mgm/Nh Mu (} \mu \text{)}$.
- Rockwool is also an open-pored material. 99% of the material covers the air gap. In this respect, it is easy to get wet if measures are not taken.

PYROGEL XT
- Thickness: 5 mm - 10 mm
- Max Usage Temperature: 0 °C + 650 °C
- The thermal conductivity value $k = 0.021 \text{ W/m-K}$.
- Color: Beige
- Density: 0.15 g / cc
- Hydrophobic: Yes
- It has 3-5 times better k value than other insulation materials.
- It is resistant to pressure and impact.
- Class A is a group of fireproof materials.

CRYOGEL X
- Thickness: 5 mm - 10 mm
- Max Usage Temperature: -200 °C + 90 °C
- The thermal conductivity is $k = 0.015 \text{ W/mK}$.
- Color: White
- Density: 0.15 g / cc
- Hydrophobic: Yes
- It has 3-5 times better k value than other insulation materials.
- It is resistant to pressure and impact.
- Class A is a group of fireproof materials.

ROPE
- Ceramic Fabric (1260 °C Resistance)

JACKET FABRIC
- Cyclon Fabric (outer scale–inner scale opt.) (200 °C Resistance)
- Fiber Glass Fabric (inner scale) (500 °C Resistance)

Velcro bants and metal wire hooks are included and standard.
VALVE INSULATION JACKETS

SELECTION CRITERIA

- **Resistance to Different Operating Temperatures**: Protects physical and thermal properties.
- **Physical Strength**: It should not lose its original properties during (vibration), storage, loadings, operation and application.
- **Mechanical Strength**: should not deteriorate in expansion and contraction.
- **It must be easy to install.**
- **Resistance to Flammability**: must be considered and covered with appropriate coating techniques.
- **Resistance to Corrosive Effects**: Water, steam etc. resistance to leaks or condensation.
- **Insulation Thickness and Weight**: Investment cost should be observed.

APPLICATIONS

TYPE 0
- Steam Traps
- Non-return Valves
- Strainers
- Flange to Flange Connected Equipment

TYPE 2
- Standard Applications
- Bypass Valves
- Separators
- Pressure Reducing Valve

TYPE 1
- Steam Trap Unit Starts
- Steam Trap Unit Ends

Exchanger Applications

We can supply exchanger jacket as request.

Note: If the customer does not specify the valve jacket type, Type-2 will be default.
VALVE INSULATION JACKETS

COMBINATION OF ROCKWOOL AND AEROGEL

- Combined use reduces surface area.
- PGXT at high temperatures
- TY at low temperatures
- It also reduces the cost of investment.
- At temperatures above 300 °C, rockwool is damaged and the insulation quality is reduced.
- Combined use will also increase the lifetime and thermal resistance capacity of the limelight.

COMBINED APPLICATION EXAMPLE

<table>
<thead>
<tr>
<th>EXP. 1</th>
<th>EXP. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYROGEL (mm)</td>
<td>70</td>
</tr>
<tr>
<td>ROCKWOOL (mm)</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL THICKNESS (mm)</td>
<td>290</td>
</tr>
</tbody>
</table>

EXCHANGE 1
6"=150mm
150+(70x2)+290 mm

EXCHANGE 2
6"=150mm
150+(50x2)+(30x2) =310mm

In this example, Pipe Size is 6", T\text sub i = 550 °C ambient temperature T_{\text{AMB}} = 20 °C and insulation surface temperature T_{\text{SRF}} = 40 °C.

STANDARD OF THERMAL HEAT UNIT (R)

<table>
<thead>
<tr>
<th>Insulation Scale</th>
<th>R Unit Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mm Rockwool</td>
<td>1.428 m2.K/W</td>
</tr>
<tr>
<td>10 mm Pyrogel</td>
<td>0.476 m2.K/W</td>
</tr>
<tr>
<td>10 mm Pyrogel + 50 mm Rockwool</td>
<td>1.904 m2.K/W</td>
</tr>
<tr>
<td>20 mm Pyrogel + 50 mm Rockwool</td>
<td>2.380 m2.K/W</td>
</tr>
<tr>
<td>30 mm Pyrogel + 50 mm Rockwool</td>
<td>2.856 m2.K/W</td>
</tr>
</tbody>
</table>

*Please check your R value according to your country’s standards.